
Pseudorandomness for read-once formulas

Andrej Bogdanov
Dept. of Computer Science and Eng.

and ITCSC,
Chinese University of Hong Kong

Periklis A. Papakonstantinou
ITCS at IIIS,

Tsinghua University

Andrew Wan
ITCS at IIIS,

Tsinghua University

Abstract— We give an explicit construction of a pseudorandom
generator for read-once formulas whose inputs can be read in
arbitrary order. For formulas in n inputs and arbitrary gates of
fan-in at most d = O(n/ logn), the pseudorandom generator uses
(1−Ω(1))n bits of randomness and produces an output that looks
2−Ω(n)-pseudorandom to all such formulas.

Our analysis is based on the following lemma. Let P = Mz+e,
where M is the parity-check matrix of a sufficiently good binary
error-correcting code of constant rate, z is a random string, e is
a small-bias distribution, and all operations are modulo 2. Then
for every pair of functions f, g : {0, 1}n/2→{0, 1} and every
equipartition (I, J) of [n], the distribution P is pseudorandom for
the pair (f(x|I), g(x|J)), where x|I and x|J denote the restriction
of x to the coordinates in I and J , respectively.

More generally, our result applies to read-once branching pro-
grams of bounded width with arbitrary ordering of the inputs. We
show that such branching programs are more powerful distinguish-
ers than those that read their inputs in sequential order: There exist
(explicit) pseudorandom distributions that separate these two types
of branching programs.

1. INTRODUCTION

We consider the problem of obtaining an explicit pseu-
dorandom distribution for the class of boolean read-once
formulas. A read-once formula on n inputs with fan-in d is
a rooted binary tree whose internal nodes called gates are
labeled by boolean functions on at most d bits. The tree
has n leaves that are labeled by the inputs 1, 2, . . . , n so
that every input is used exactly once. The labeling of the
leaves by inputs can be done in arbitrary order and we do
not impose any restriction on the depth of the formula.

A family of distributions P : {0, 1}s(n)→{0, 1}n is pseu-
dorandom with seed length s(n) < n and bias ε(n) for
read-once formulas if for every read-once formula f in n
inputs, ∣∣EP[f(P)]−EU[f(U)]

∣∣ ≤ ε(n).

where u is the uniform distribution on n bits.
The construction of explicit pseudorandom distributions

for various models of computation is a central research
program in computational complexity. Celebrated examples

A.B. is partially supported by RGC GRF grant CUHK410309. P.A.P.
and A.W. are partially supported by the National Basic Research Program
of China Grant 2007CB807900, 2007CB807901, the National Natural Sci-
ence Foundation of China Grant 61050110452, 61150110163, 61033001,
61061130540, 61073174.

include generators that fool circuits of constant depth [1],
[2], [14], [7] and logarithmic space (more generally space-
bounded) machines that read their input once and in a fixed,
left-to-right order [13], [11].

Read-once boolean formulas are one of the simplest natu-
ral classes of computations for which no efficient construc-
tion of pseudorandom generators was previously known.
Read-once formulas formulas can compute parities, which
are hard for constant-depth circuits. This makes it unlikely
that known techniques for constructing pseudorandom gen-
erators for constant-depth circuits can be easily extended to
handle read-once formulas.

The relation between read-once formulas and read-once
branching programs (the nonuniform variant of space re-
stricted computations) is more subtle. As we show in
Lemma 1, a read-once formula of constant fan-in can be
converted to a read-once branching program of polynomial
width, which is the non-uniform analogue of read-once
logspace. So why shouldn’t Nisan’s pseudorandom generator
for logarithmic space also apply to read-once formulas?
The answer has to do with the ordering of the inputs.
Nisan’s pseudorandom generator fools branching programs
that read their inputs obliviously and in a fixed order. It is
not known whether Nisan’s pseudorandom generator fools
read-once formulas. In fact, Nisan’s analysis crucially relies
on the fact that the inputs are read in this order. The
intuition behind Nisan’s analysis is that after reading the
inputs in the first half, owing to the space restriction the
computation must “forget” most information about these
inputs, and these can be recycled by applying an appro-
priate extractor (this intuition can be made precise [16]).
In contrast, our pseudorandom generator fools read-once
branching programs that work under an arbitrary ordering
of the inputs. The construction of pseudorandom generators
against more complex models of computation (which include
read-once formulas) has applications in the derandomization
of polynomial time with limited access to randomness [10].

If instead of pseudorandomness we consider worst-case
hardness then there is a long line of research in lower
bounds, including generalizations of read-once branching
programs. For read-once formulas such a lower bound
can be obtained directly through standard communication
complexity reductions to functions that are hard in the best-

case partition, two-party model [15].
In this work we give an explicit construction of a pseu-

dorandom distribution for read-once formulas. Our savings
in randomness are rather modest, although our construction
allows almost-linear fan-in and gives exponentially small
error. As the model of read-once formulas brings out new
issues in the design of pseudorandom generators, we believe
that the real contribution of our work lies in the techniques
used in our construction and analysis rather than in the result
itself.

Theorem 1. There exists constants ρ,K > 0 and an explicit
pseudorandom distribution family P : {0, 1}(1−ρ)n→{0, 1}n
so that for every n,∣∣EP[f(P)]−EU[f(U)]

∣∣ = 2−Ω(n)

for every read-once formula f over n inputs of fan-in at
most n/K log n.

Our pseudorandom distribution is quite simple: It has the
form P = Mz + e, where M is the parity check matrix of
a binary linear list-decodable code of linear rate and list-
decoding radius bounded away from 1/4, z is a uniformly
random string, and e is a small-bias distribution [12]. By
“explicit” we mean that there is an algorithm that takes as
inputs 1n and a random seed of length (1−ρ)n and outputs
a sample from the distribution P in time polynomial in n.

We also prove that, in general, allowing arbitrary ordering
of the inputs makes branching programs into more powerful
distinguishers: We give examples of pseudorandom distribu-
tions that fool all branching programs that read their input
bits sequentially, but not those that have read-once access to
their input in arbitrary order. Recently, we’ve become aware
of independent, work which appears in Yoav Tzur’s MSc
thesis [18], showing that Nisan’s generator does not work
under arbitrary ordering of the inputs.

Techniques: To give some intuition for the proof of
Theorem 1, let’s assume n is even and we have a read-
once formula F with fan-in d = 2 which is a full binary
tree of depth logd n. Consider the root gate of this formula
and let f and g be the functions computed by the left and
right subtrees, respectively. Then a sufficient condition for
the output of F to be pseudorandom is the following one:

For every pair of read-once formulas
f, g : {0, 1}n/2→{0, 1} and every equipartition
(I, J) of [n], the joint distribution (f(P|I), g(P|J))
is close (in statistical distance) to the joint
distribution (f(U|I), g(U|J)).

Our analysis proceeds by forgetting that f and g are them-
selves read-once formulas and treating them as arbitrary
functions. At this level of generality for the choice of f and
g, it is clear that the pseudorandom distribution P cannot
have much fewer than n/2 bits of entropy.

To understand the elements that go into our construction,
we make two observations. Our first observation is that

in order to fool the joint distribution (f(x|I), g(x|J)), for
every equipartition (I, J) of [n], it is at least necessary to
fool the marginal distribution f(x|I) for every subset I of
[n] of size n/2. This suggests choosing P to be an (n/2)-
wise independent distribution. One way to obtain such a
distribution is to set P = Mz, where M is an n×k (k < n)
matrix whose every (n/2) × k minor has full rank, and
z ∈ {0, 1}k is uniformly random.

Our second observation is that since the collection of
functions f(x|I) + g(x|J) in particular includes all parities
over subsets of [n] (in fact, all such parities can be computed
by read-once formulas), the distribution P must be a small-
bias distribution.

Taken together, these two observations suggest the pseu-
dorandom distribution P = Mz + e, where M and z are
as above and e is a small-bias distribution. Using Fourier
analysis, it is not difficult to show this distribution is indeed
pseudorandom.

One issue with this construction is that it may not provide
any savings in randomness at all: To obtain a matrix M such
that every (n/2) × k minor has full rank, by the Plotkin
bound one needs k = n−O(1). However, it turns out that the
analysis still works if every (n/2)×k minor of M has almost
full rank; for a precise statement see Lemma 2. Under this
relaxed property, it is possible to obtain an explicit matrix
M of dimensions n×(1−Ω(1))n using known constructions
of binary error-correcting codes; see Proposition 1.

To extend our analysis to general read-once formulas
(with larger fan-in and without restrictions on the shape of
the formula tree), in Lemma 1 we show that a read-once
formula with fan-in d can be converted into a read-once
branching program of width nO(d). The celebrated result
of Barrington [4] shows that any polynomial size formula
can be represented by polynomial size width-5 branching
programs (not read-once), and later results [8], [9], [17]
reduced the total size of the branching program to s1.2 if
s is the size of the formula. In Lemma 1, we do not attempt
to optimize the width or size of the program, but we need to
maintain the property that each variable is read only once.
Lemma 3 shows that such branching programs are indeed
fooled by the pseudorandom distribution P.

2. READ-ONCE FORMULAS AND BRANCHING PROGRAMS

A boolean read-once formula on n inputs with fan-in d
is a rooted binary tree with branching factor at most d and
exactly n leaves. The leaves of this tree are labeled by the
inputs 1, 2, . . . , n, where each input is used exactly once, and
each internal node g with dg children is labeled by a boolean
function g : {0, 1}dg→{0, 1} called a gate. A read-once
formula represents a boolean function f : {0, 1}n→{0, 1} in
the natural manner: The inputs of this function are placed
at the leaves of the tree with corresponding labels and each
gate is evaluated inductively. The output of f is the value
at the root.

A boolean read-once branching program on n inputs and
width w is a layered sequence of n directed bipartite graphs
whose left and right vertices come from the set of states
{1, . . . , w}. In each of these graphs, each left vertex has
exactly two outgoing edges, one labeled by 0 and the other
labeled by 1. Each layer in the sequence is labeled by a
unique input bit coming from the set {1, . . . , n}. There is a
special vertex s in the initial layer called the start vertex
and a special vertex t in the last layer called the final
vertex. A read-once branching program computes a boolean
function f : {0, 1}n→{0, 1} as follows: Starting at s, follow
the unique path along the sequence of graphs that is indexed
by the values of the input bits. If this path reaches t output
1, otherwise output 0.

Lemma 1. Suppose f is computable by a read-once formula
on n inputs with fan-in d. Then f is computable by a read-
once branching program on n inputs of width nO(d).

We stress that the order in which the inputs are read in the
branching program may differ from the order in which the
inputs are read when the formula is evaluated in the natural
way – depth-first, left-to-right.

Proof: Let sd(n) be the maximum width of a read-once
branching program that computes a read-once formula on n
inputs with fan-in d, and let F be any read-once formula
on n inputs with fan-in d. Starting at the root node v,
we iteratively select the sub-formula rooted at one of the
children of v with the largest number of leaves, until we
end up with a sub-formula F ′ of size at most dn/(d + 1).
Let Fx be the formula obtained by replacing the subformula
F ′ from F by a fresh new input x.

We argue that both formulas Fx and F ′ have at most
ddn/(d+ 1)e leaves, and hence each may be computed by
a read-once branching program of width sd(ddn/(d+ 1)e).
The bound on F ′ follows by construction. On the other hand,
we also know that F ′ as the largest child must have more
than n/(d + 1) leaves, otherwise its parent would have at
most dn/(d + 1) leaves and would have been selected by
the procedure. Then Fx has fewer than n−n/(d+ 1) + 1 =
dn/(d + 1) + 1 leaves (the extra leaf comes from the new
input x).

Now consider the following read-once branching program
for computing F : First, run the branching program for F ′.
Then run two parallel copies of the branching program for
Fx, corresponding to the cases when F ′ evaluates to 0 and
F ′ evaluates to 1, respectively. When the input x in these
branching programs is to be read, replace the value of x by
the corresponding output of F ′. If F ′ evaluates to true on
its input, the input proceeds along the copy Fx=1, otherwise
it proceeds along the copy Fx=0.

The width of the branching program for F is the larger
of the width of the branching program for F ′ and twice
the width of the branching program for Fx. Since F was

arbitrary, we obtain the recursive relation

sd(n) ≤ 2sd(ddn/(d+ 1)e).

which solves to sd(n) = nO(d).

3. THE PSEUDORANDOM GENERATOR

We say a linear code C over {0, 1}n is (δ, `) list-
decodable if for every x ∈ {0, 1}n, the number of codewords
of C within hamming distance δn of x is at most `. A parity
check matrix M for C is a GF (2) matrix such that cTM = 0
if and only if c is a codeword of C.

Proposition 1. Let C be a (1
4 , `) list-decodable code over

{0, 1}n, where n is even and γ > 0. Let M be the parity
check matrix of C. Then every subset of n/2 rows of M has
dimension at least n/2 − log2(2`) (as a vector space over
GF (2)).

Proof: Let r = log2(2`). Assume for contradiction that
there exists a subset S of n/2 rows of dimension less than
n/2− r. Then there exist more than 2r vectors V such that
for every v ∈ V , vTM = 0 and vi = 0 for every i 6∈ S, i.e.,
the vectors in V are in C and all have distance at most n/2
from each other.

It is easy to see that there is a vector within Hamming
distance n/4 on at least |V |/2 of them. Let v be 0 on
the coordinates outside of S and uniformly random on the
coordinates in S. Then the distance between any v ∈ V
and v is the sum of n/2 independent unbiased Bernoulli
random variables, and so it exceeds n/4 with probability at
most 1/2. Therefore the expected number of v ∈ V whose
distance to v exceeds n/4 is at most |V |/2. So there must
exist a choice of v that is within distance n/4 from at least
half the vectors in V .

Since |V |/2 > ` and V ⊆ C, this contradicts the fact that
C is (1

4 , `) list-decodable.
We now consider the following construction:
1) Let M be a n× k matrix over GF (2) such that every

subspace spanned by n/2 rows has dimension n/2−r,
and let z ∼ {0, 1}k be a uniformly random vector.

2) Let e ∈ {0, 1}m be chosen independently of z from
an ε-biased distribution. We say that a distribution D
over {0, 1}n is ε-biased if for every S ⊆ [n], S 6= ∅,∣∣Ee∼D[(−1)〈s,e〉

]∣∣ ≤ ε.
3) Let P be the (pseudorandom) distribution over {0, 1}n

defined by
P = Mz + e (1)

where the addition is modulo 2.

Lemma 2. Assume n is even. Then for every partition I, J
of [n] with |I| = |J | = n/2 (where I and J are ordered
sets) and every pair of functions f, g : {0, 1}n/2→[−1, 1],∣∣EP[f(P|I)g(P|J)]−EU[f(U|I)g(U|J)]

∣∣ ≤ 2rε

where u is the uniform distribution over {0, 1}n, p is defined
as above, and x|I , x|J denote the projections of x on the sets
I and J , respectively.

In particular, when g = 1, |EP[f(P|I)] − EU[f(U|I)]| ≤
2rε, so the pseudorandom distribution also preserves the
marginal probabilities of events (within 2rε) over all subsets
of size n/2.

Proof: For any partition (I, J) of [n] with |I| = |J | =
n/2, we have

EP[f(P|I)g(P|J)] = Ez,e[f((Mz + e)|I)g((Mz + e)|J)]

=
∑
S⊆I
T⊆J

f̂(S)ĝ(T)Ez,e[χS(Mz|I)χS(e|I)χT (Mz|J)χT (e|J)]

=
∑

S⊆I,T⊆J

f̂(S)ĝ(T)Ez[χS(Mz|I)χT (Mz|J)]Ee[χS∪T (e)].

The term S = T = ∅ contributes f̂(∅)ĝ(∅) =
Eu[f(u|I)g(u|J)] to the summation. Since e is an ε-biased
distribution, whenever S∪T 6= ∅ we have |Ee[χS∪T (e)]| ≤
ε. Therefore∣∣EP[f(P|I)g(P|J)]−EU[f(U|I)g(U|J)]

∣∣ =∣∣∣∣ ∑
S⊆I,T⊆J,S∪T 6=∅

f̂(S)ĝ(T)Ez[χS(Mz|I)χT (Mz|J)]

Ee[χS∪T (e)]

∣∣∣∣
≤

∑
S⊆I,T⊆J

ε · |f̂(S)||ĝ(T)|
∣∣Ez[χS(Mz|I)χT (Mz|J)]

∣∣.
Let G be a bipartite graph over vertices (subsets of I) ∪
(subsets of J), with an edge (S, T) present whenever
Ez[χS(Mz|I)χT (Mz|J)] 6= 0. We will shortly argue that
G has maximum degree 2r. Assuming this, we can upper
bound the last expression by

ε ·
∑
edge

(S,T)

|f̂(S)||ĝ(T)| ≤ ε ·
√√√√√∑

edge
(S,T)

f̂(S)2

√√√√√∑
edge

(S,T)

ĝ(T)2

≤ ε ·
√

2r
∑
S⊆I

f̂(S)2

√
2r
∑
T⊆J

ĝ(T)2

≤ ε · 2r,

where the first line follows from the Cauchy-Schwarz in-
equality, the second line follows from the fact that G has
maximum degree 2r, and the third line is an application of
Parseval’s identity.

It remains to argue that G has maximum degree 2r. Let
s ∈ {0, 1}I , t ∈ {0, 1}J be indicator vectors for the sets
S and T , respectively, and s ◦ t ∈ {0, 1}n be the vector
obtained by concatenating s and t according to the partition

(I, J) of [m]. Then

Ez[χS(Mz|I)χT (Mz|J)] = E[(−1)(s◦t)TMz] =

=

{
1, if (s ◦ t)TM = 0

0, otherwise.

Now (s ◦ t)TM = 0 if and only if sTM |I = tTM |J , where
M |I and M |J are the minors of M restricted to the rows
indexed by I and J , respectively. Since (by assumption)
the matrix M |I has rank at least n/2 − r, for every t ∈
{0, 1}J , there can be at most 2r vectors s ∈ {0, 1}I such
that sTM |I = tTM |J . By an analogous argument, for every
s ∈ {0, 1}I , there can be at most 2r vectors t ∈ {0, 1}J such
that sTM |I = tTM |J .

Parameters: Combining Proposition 1 and Lemma 2 ,
we have that if C is a (1/4, 2n) list-decodable code with
parity check matrix M , then P is a 4nε pseudorandom
distribution in the sense of Lemma 2. By the Johnson
bound, any C with minimum distance 3/8 is (1/4, 2n) list-
decodable.

Using standard constructions, for example [3], for some
constant ρ > 0 and sufficiently large n, we can obtain
explicit families of linear codes over GF (2) of rate 2ρn
and minimum distance 3/8. If M is the parity check matrix
of such a code, then P has seed length (1− 2ρ)n+ sl(n, ε),
where sl(n, ε) is the seed length of the ε-biased distribution
e. With the construction from [12] we can achieve sl(n, ε) =
O(log(n/ε)). Choosing ε so that sl(n, ε) = ρn (we can use
the construction in [3] for a better constant), we obtain an
explicit pseudorandom generator P of seed length (1−ρ)n so
that for for every partition I, J of [n] with |I| = |J | = n/2
and every pair of functions f, g : {0, 1}n/2→{−1, 1},∣∣EP[f(P|I)g(P|J)]−EU[f(U|I)g(U|J)]

∣∣ = 2−Ω(n).

Remarks: Our proof can be extended to obtain the
following more general statement: For every α > 0 there
exists a ρ > 0 and an explicit matrix M of size n×(1−ρ)n
so that for every pair of (possibly intersecting) sets I, J with
|I|, |J | ≤ (1− α)n and for every pair of functions f, g, the
conclusion of Lemma 2 holds.

We observe that when the sets I and J are fixed, the con-
clusion of Lemma 2 can be achieved by choosing (P|I , P|J)
to be the endpoints of a random edge in an expander graph
on n/2 vertices with eigenvalue gap 1−ε. (Lemma 2 then be-
comes simply the expander mixing lemma.) The seed length
of this construction is n/2+O(log 1/ε) (if a constant-degree
expander family is used), which is essentially optimal. It may
be interesting to investigate how closely these parameters
can be matched in our more general setting.

4. PSEUDORANDOMNESS FOR READ-ONCE FORMULAS

We now show that the pseudorandom generator con-
structed in the previous section fools read-once formulas.
First, we apply Lemma 1 to obtain a read-once branching

program having width nO(d). We then apply the following
lemma, which shows that the generator fools poly(n)-width
read-once branching programs (where the inputs may be read
in any order).

Lemma 3. Assume n is even and F : {0, 1}n→{1,−1} is
computable by a width-w read-once branching program on
n inputs. Let P be the distribution defined in (1). Then

|EP[F (P)]−EU[F (U)]| ≤ w · 2dε.

Proof: We view the computation of the branching
program for F in two stages; the first stage follows the
input from the start state to the middle (n/2-nd) layer, and
the second stage proceeds from the middle layer to the final
layer.

Let I be the ordered set of variables read from the
first to the middle layer and J be the ordered set of
variables in remaining layers. Then we can define a family
of functions {fq} over the bits in I for each state q
of the middle layer. For x ∈ {0, 1}n let fq(x|I) be an
indicator for the event that x|I leads from the start state
to state q and gq(x|J) be an indicator for the event that
x|J leads from state q to the final state. Observe that F (x)
evaluates to 1 if and only if the input x induces a path
s→q→t for some state q in the middle layer. Therefore
F (x) =

∑
q in middle layer fq(x|I)gq(x|J), and by Lemma 2

and the triangle inequality |EP[F (P)]−EU[F (U)]| ≤ w2dε.

We now prove our main theorem.
Proof of Theorem 1: Let f be a read-once formula over

n inputs of fan-in d. By Lemma 1, f can be computed by a
read-once branching program of width nO(d). By Lemma 3,
the pseudorandom distribution (1) fools this branching pro-
gram with bias 2rnO(d)ε. Plugging in the parameters from
Section 3 and optimizing for d, we derive the theorem.

5. A SEPARATION BETWEEN SEQUENTIAL AND RANDOM
ACCESS

We now give an example of a pseudorandom distribution
that fools read-once branching programs under sequential,
read-once access of input bits, but fails to fool such programs
under arbitrary read-once access. An interesting aspect of
this construction is its generality; we construct the pseudo-
random generator starting from an arbitrary pseudorandom
generator that fools a sequential read-once branching pro-
gram (e.g. Nisan’s generator).

Let P be any distribution over n bits, where n is a power
of two. Define the following distribution P over strings of
length n + log n: Independently obtain a sample x from P
and a number i ∈ [n], replace the ith entry of x by 1, and
output the concatenated pair (x, i).

No matter what P is, the distribution P is clearly dis-
tinguishable from uniform by a branching program with
arbitrary read-once access of width O(n2). On the other
hand:

Lemma 4. If P is (O(
√

(logw)/n), w)-pseudorandom
against sequential access read-once branching programs
of width w, then P is (O(

√
(logw)/n), w) pseudorandom

against such branching programs.

Here “(ε, w)-pseudorandom” means that no sequential,
read-once branching program of width w has distniguishing
advantage greater than ε.

When logw = o(n/ log n), the output of Nisan’s pseu-
dorandom generator satisfies the hypothesis, giving an
explicit example of a pseudorandom distribution that is
O(
√

(logw)/n) pseudorandom against fixed-order branch-
ing programs of width w but not 1/4-pseudorandom against
arbitrary read-once access branching programs of the same
width.

We now prove the lemma. Let U be the uniform distribu-
tion on n bits and U be the distribution on n + log n bits
obtained by sampling (x, i) uniformly and changing the ith
bit of x to equal 1. The lemma follows immediately from
the next two claims.

Claim 1. If P and U are (ε, w)-indistinguishable, then P and
U are (ε, w) indistinguishable.

Proof: Let D be a distinguisher such that

Pr
(x,i)∼P

[D(x, i) = 1]− Pr
(x,i)∼U

[D(x, i) = 1] > ε.

In particular, there must exist a value i = a for which

Pr
(x,i)∼P

[D(x, i) = 1 | i = a]− Pr
(x,i)∼U

[D(x, i) = 1 | i = a] > ε.

Now consider the distinguisher D(x) = D(xa, a), where xa

is x with its ath bit replaced by 1. Clearly

Pr
x∼pr

[D(x) = 1] = Pr
(x,i)∼P

[D(x, i) = 1 | i = a] and

Pr
x∼u

[D(x) = 1] = Pr
(x,i)∼U

[D(x, i) = 1 | i = a].

Moreover, if D is a width w branching program, then so is
D, contradicting our assumption.

Claim 2. The distribution U is (O(
√

(logw)/n), w)-
indistinguishable from uniform.

Proof: Assume D is a branching program of width
w that distinguishes U from the uniform distribution with
advantage ε. Then Pr[D(xa, i) = 1]− Pr[D(x, i) = 1] > ε,
where x and i are uniformly random. Manipulating this
expression, we obtain that Pr[D(x, i) = xi] > 1/2 + ε.
Letting S ∈ [w] denote the state of D after reading x and
E denote the event D(x, i) = xi, we have

H(E) ≥ H(E | S) = H(xI | S) = Ei∼[n][H(xI | S, I = i)]

≥ 1

n
H(X | S) ≥ n− logw

n

where H is Shannon entropy. Since Pr[E] > 1/2 + ε,
H(E) > 1− 2

ln 2ε
2, and ε = O(

√
(logw)/n).

Claim 2 follows from the general round-elimination
lemma in communication complexity; we provide a self-
contained proof for our special case. We remark that the
bound in Lemma 4 is tight and can be matched by a
distinguisher that divides x into logw consecutive blocks
of equal length and outputs the majority value of the ith
block.

6. CONCLUSION

We gave a construction of an explicit pseudorandom
distribution P of seed length (1−Ω(1))n that fools read-once
formulas in n variables of fan-in d = o(n/ log n) with bias
2−Ω(n). A natural question is whether a smaller seed length
can be achieved for read-once formulas of, say, constant
fan-in and constant bias.

The technical lemma that powers our result says that P
fools the distribution (f(x|I), g(x|J)) for every pair of func-
tions f, g : {0, 1}n/2→{0, 1} and every equipartition (I, J)
of [n]. In the case of a read-once formula, the functions f
and g have additional structure – they are themselves read-
once formulas or read-once branching programs of small
width – which we do not take advantage of in our analysis.

This observation suggests that better parameters may pos-
sibly be obtained via recursive composition, along the lines
of Nisan’s pseudorandom generator for small space [13].
However, we were unable to show that our construction
can be composed in this manner. Even for two levels
of composition, Lemma 2 does not appear to be useful
for arguing pseudorandomness at the bottom level of the
construction. Sequential composition methods (e.g. [5]) do
not appear to yield constructions that can be readily analyzed
either.

Another direction that may be interesting to pursue would
be to construct a pseudorandom generator for space-bounded
machines that read every input once, but in an adaptive
fashion. That is, its decision about which bit to read at time
t can be computed as a logspace computable function of its
configuration and the set of indices of bits that have already
been read (both determined by what has been observed up
to time t − 1). We observe that the hard function for the
best-case partition model of Papadimitriou and Sipser [15]
becomes easy to compute by an adaptive read-once branch-
ing program (or syntactic read-once branching program) but
other functions are known to be hard for read-k branching
programs [6].

ACKNOWLEDGEMENTS

We thank Shachar Lovett for directing us toward related
results ([6] and the unpublished work of Yoav Tzur) and for
pointing out an improvement in Proposition 1.

REFERENCES

[1] M. Ajtai and M. Ben-Or, “A theorem on probabilistic constant
depth computations,” in Proceedings of the sixteenth annual
ACM symposium on Theory of computing, ser. STOC ’84.
New York, NY, USA: ACM, 1984, pp. 471–474. [Online].
Available: http://doi.acm.org/10.1145/800057.808715

[2] M. Ajtai and A. Wigderson, “Deterministic simulation of
probabilistic constant depth circuits,” in 26th Annual Sym-
posium on Foundations of Computer Science. IEEE, 1985,
pp. 11–19.

[3] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, “Construc-
tion of asymptotically good low-rate error-correcting codes
through pseudo-random graphs,” Information Theory, IEEE
Transactions on, vol. 38, no. 2, pp. 509–516, 1992.

[4] D. A. M. Barrington, “Bounded-width polynomial-size
branching programs recognize exactly those languages in
NC1,” Journal of Computer and System Sciences, vol. 38,
no. 1, pp. 150–164, 1989.

[5] M. Blum and S. Micali, “How to generate cryptographically
strong sequences of pseudo-random bits,” SIAM Journal on
Computing, vol. 13, pp. 850–864, 1984.

[6] B. Bollig, M. Sauerhoff, and I. Wegener, “On the nonap-
proximability of boolean functions by obdds and read-k-times
branching programs,” Information and Computation, vol. 178,
no. 1, pp. 263 – 278, 2002.

[7] M. Braverman, “Polylogarithmic independence fools ac0 cir-
cuits,” Journal of the ACM (JACM), vol. 57, no. 5, pp. 1–10,
2010.

[8] J. Cai and R. Lipton, “Subquadratic simulations of circuits by
branching programs,” in Foundations of Computer Science,
1989., 30th Annual Symposium on. IEEE, 1989, pp. 568–
573.

[9] R. Cleve, “Towards optimal simulations of formulas by
bounded-width programs,” in Proceedings of the twenty-
second annual ACM symposium on Theory of computing.
ACM, 1990, pp. 271–277.

[10] M. David, P. Nguyen, P. A. Papakonstantinou, and
A. Sidiropoulos, “Computationally limited randomness,” in
Innovations in Computer Science (ICS), Beijing, China, Jan-
uary 2011, pp. 522–535.

[11] R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudoran-
domness for network algorithms,” in Proceedings of the 26th
Annual ACM Symposium on Theory of Computing, STOC’94
(Montréal, Québec, Canada, May 23-25, 1994). New York:
ACM Press, 1994, pp. 356–364.

[12] J. Naor and M. Naor, “Small-bias probability spaces: efficient
constructions and applications,” SIAM Journal of Computing
(SICOMP), vol. 22(4), pp. 838–856, 1993, earlier version in
STOC’90.

[13] N. Nisan, “Pseudorandom generators for space-bounded com-
putation,” Combinatorica, vol. 12, no. 4, pp. 449–461, 1992.

[14] ——, “Pseudorandom bits for constant depth circuits,” Com-
binatorica, vol. 11, no. 1, pp. 63–70, 1991.

[15] C. H. Papadimitriou and M. Sipser, “Communication com-
plexity,” in ACM Symposium on Theory of Computing (STOC
’82). Baltimore, USA: ACM Press, May 1982, pp. 196–200.

[16] R. Raz and O. Reingold, “On recycling the randomness of
states in space bounded computation,” in Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing
(STOC’99). New York: Association for Computing Machin-
ery, May 1999, pp. 159–168.

[17] M. Sauerhoff, I. Wegener, and R. Werchner, “Relating branch-
ing program size and formula size over the full binary basis,”
in Proceedings of the 16th annual conference on Theoretical
aspects of computer science. Springer-Verlag, 1999, pp. 57–
67.

[18] Y. Tzur, “Notions of weak pseudorandomness and GF(2n)-
polynomials,” Master’s thesis, Weizmann Institute of Science,
Rehovot, Israel, 2009.

